from fastapi import FastAPI from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain_community.document_loaders import WebBaseLoader from langchain_openai import OpenAIEmbeddings from langchain_community.vectorstores import FAISS from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain.tools.retriever import create_retriever_tool from langchain_community.tools.tavily_search import TavilySearchResults from langchain_openai import ChatOpenAI from langchain import hub from langchain.agents import create_openai_functions_agent from langchain.agents import AgentExecutor from langchain.pydantic_v1 import BaseModel, Field from langchain_core.messages import BaseMessage from langserve import add_routes
# 2. 创建工具集 retriever_tool = create_retriever_tool( retriever, "langsmith_search", "Search for information about LangSmith. For any questions about LangSmith, you must use this tool!", ) search = TavilySearchResults() tools = [retriever_tool, search]
每个 LangServe 服务都附带一个简单的内置 UI,用于配置和调用应用程序,以及提供流式输出和中间步骤的可见性。可以通过 http://127.0.0.1:8000/agent/playground/ 来访问它。传入之前的问题 - “how can langsmith help with testing?” - 它应该会像之前一样回应。